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We consider the usual one-dimensional tight-binding Anderson model with the 
random potential taking only two values, 0 and 2, with probability p and 1 - p, 
0 < p < 1. We show that the Liapunov exponent yx(E), E e  R, diverges as t ~ cc 
uniformly in the energy E. Using a result of Carmona, Klein, and Martinelli, 
this proves that for 2 large enough, the integrated density of states is singular 
continuous. We also compute explicitly the exact asymptotics for a dense set of 
energies and we compare the results with numerical simulations. 

KEY W O R D S :  Liapunov exponent; random matrices; one-dimensional 
Anderson localization. 

1. I N T R O D U C T I O N  

The one-dimensional discrete Schr6dinger equation with a random 
stationary and ergodic potential has attracted the attention of both 
physicists and mathematicians for many years. ~ 3) In particular, for a large 
class of models it was proved that if the potential v is a collection of 
independent, identically distributed random variables, then, under very 
mild assumptions on the probability distribution of the potential dP(v), the 
eigenfunctions of the infinite Jacobi matrix H, 

(H~0)(n) = -(p(n+l)--~o(n-1)+v(n)(p(n), n~Z  (1.1) 

are exponentially localized with probability one whenever 2 > 0. (1 31 
The rate of decay ("mass") at energy E is given by the so-called 

"Liapunov exponent" ?(E), which can be defined as follows. Let Tn(v, E) be 
the 2 x 2 matrix 

(v (n) -E ,  -10) (1.2) T,(v, E) = \1, 
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Then 

lira n - '  log II T,,(v, E) . . -Tl(V , E)II = ~,(E) 
n ~ o o  

(1.3) 

exists with probability one, it is a nonrandom quantity, and it is strictly 
positive for any E e R. 

Surprisingly, a very natural model in which the random variables are 
Bernoulli-distributed, e.g., 

v = 0 with probability p 
(1.4) 

v = 2 with probability 1 - p 

turned out to be very difficult to analyze, and only recently have 
Carmona et al. C41 been able to prove the localization phenomena in this 
case. An interesting consequence of their result was a very direct connec- 
tion between the regularity properties of the integrated density of states 
(i.d.s.) measure dN~.(E) and the size of the Liapunov exponent. The i.d.s, is 
defined as follows: Let Hc be the restriction of the Jacobi matrix H to the 
interval [ -  L, + L].  Then 

N;,(E)= lim (2L+ 1) -1 # {eigenvalues o f H c < E  } (1.5) 
L + c o  

The above limit exists almost surely and it is a nondecreasing function 
of E. 

Carmona et al. ~41 proved the following result. Let S be the almost 
surely constant spectrum of H; in the Bernoulli case, X =  [--2,  + 2 ]  vo 
[-2 - 2, 2 + 2]. Then we have the following result. 

T h e o r e m .  For any open set I c  X such that 

inf 7;.(E) > In 4 
E E I  

(1.6) 

the restriction of the measure dN~. to I is purely singular continuous. 

In a slightly less precise form this result was conjectured in Ref. 5. At 
first sight it is natural to conjecture that the critical condition (1.6) is 
satisfied for I = X  provided that the coupling constant 2 is taken large 
enough. In fact, if one expresses the Liapunov exponent by means of the 
Thouless formula (6) 

2 . f2.+2 
7~(E)=f 2dN~(E')lnlE-E'I+ 2 dNa(E')lnlE-E't (1.7) 



Liapunov Exponent in a Binary Alloy 3 

and E is, e.g., in the lowest band [ - 2 ,  2], then the second term in the rhs 
of (1.7) behaves like 

r 
4 + 2  ~--- __  

1~+2dN~.(E')ln ]E-E'] ~ln,~ dN~]E') (1 p ) l n 2  (1.8) 
' ~  2 " J 2 - - 2  

as 2 --* oo. 
This would be exactly the naive conjecture for the large-2 behavior of 

7~.(E): the In 2 factor is the contribution to the Liapunov exponent of a 
single high barrier v = 2  and ( l - p )  is the density of the high barriers. 
However, the first term in (1.7) contains a negative singularity at E'=E 
which could a priori compensate the large positive term (1.8). It is clear 
that the regularity properties of the function N~.(E) must play an important 
role. In general, it can be proved (v) that if the single-site distribution has a 
bounded density, then the dN~.(E) has also a bounded density, and Le 
Page (8) (see also Ref. 3) proved that under very mild conditions, which 
cover the Bernoulli case, N~.(E) is at least Holder continuous. However, in 
the Bernoulli case, Simon and Taylor, (5) using an argument due to 
Halperin, (9) showed that the order c~ = c~(2) of Holder continuity of N~.(E) 
decreases as 2 ~ +oo like 

~().) = O(1/2) (1.9) 

at least for a dense set of energies. 
Nieuwenhuizen and Luck, in a very interesting, although not com- 

pletely rigorous paper, (~~ analyzed in great detail the nature of the 
integrated density of states near these special energies and derived, e.g., the 
following result: 

N~.(E • e) - N~.(E) ~ _+eZ~R_+ (ln e/ln/~) 

where E is one of the special energies, R_+ is a periodic function, and e and 
depend on E. 

The above results show that the first term in (1.7) behaves for a dense 
set of energies like 

f2 dN~.(E') In ] E -  E'] ~ -C(E, p) (1.10) In 
- - 2  

for some constant C(E, p). 
Thus, one has to show that C(E, p) is always less than ( 1 - p ) .  This 

turns out to be a very subtle problem, and in Ref. 4 it was partially solved 
by proving that for 6 > 0 there exists a set X0 c s of full Lebesgue measure 
1 such that 

lim ~ ( E ) > ( 1 - p ) - 6  for any EeZ"  o (1.11) 
2 - ~ o o  
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This result, however, did not rule out the possibility that 

inf 7 ~ ( E ) < l n 4  for any 2 (1.12) 
E e l "  

In this paper we completely solve the problem. We prove that uniformly in 
the energy the Liapunov exponent goes to infinity like cons t . ln  2 and we 
compute exactly the constant for a dense set of energies. This is done in 
Section 3. In Section 2 we recall some mathematical definitions and results 
concerning the Liapunov exponent, while in Section 4 we present some 
numerical simulations. The reader interested in the weak disorder case 
2 ~ 1 is referred to an interesting paper by Derrida and Gardner(11); the 
result of their work indicate that for 2 sufficiently small the density of  states 
dN;.(E)/dE should exist. Therefore, a transition from weak disorder to high 
disorder should occur in the regularity properties of the i.d.s. 

2. O N  T H E  L I A P U N O V  E X P O N E N T  

We recall here a basic mathematical result on the Liapunov exponent 
that we will need in the next section. The material of this section is taken 
from Ref. 3. 

For  any nonzero vector x e R 2, _x denotes the corresponding point in 
the compact projective line X. A matrix g~ SL(2, R) acts on X by 

g ._x:  g x (2.1) 

Given two probability measures v and ft on SL(2, R) and Y, respectively, 
we denote their "convolution" v*ft by 

(v*ft)(f) : f f  f ( g .  _x) dv(g) dft(_x) (2.2) 

for any f ~ Co(X). 
We will say that ft is v-invariant iff v*ft = ft. 
For  any measure /] on X such that f i(o)= 0 we will also construct a 

measure # on R via the application x = (~) ~ v/u. 
Let now v e be the distribution of the transfer matrix T(v, E) given by 

(1.2) corresponding to the probability distribution dP(v) of the potential v. 
Then one has the following result. 

T h e o r e m .  If the measure dP(v) is not concentrated on a single 
point and i f~dP(v) I r i s< +oo for some ~ > 0 ,  then: 

(i) There exists a unique ve-invariant measure fie with ftE(_x)=0 
V_x~ X. 
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(ii) For s o m e f l > O  

fRd~(z) Izl~< + ~ ;  fRd~E(Z) IZ-Zol-~< + ~  forany zoeR  

(iii) The Liapunov exponent 7(E) is strictly positive for any E and 

7(E) = - f dyE(Z) In [zl 

This last formula is known as the Furstemberg formula. 
The above result clearly applies to the case considered in this paper, 

namely 

dP(v)  = p6(v = 0) + (1 -- p)  3(v = 2) 

In particular, for any energy E, Eq. (2.2) applied to v e and fie gives 
the following basic equation satisfied by the measure #E: 

itE(A ) = p # E ( T  o X(A)) + (1 -- p)  ~E(T~ I(A))  (2.3) 

where A is any measurable set in R and the maps To and T~. are given by 

To(Z) = - 1 / ( E + z ) ;  T~= 1 ~ ( 2 - E - - z )  (2.4) 

In the derivation of (2.3) we have used the regularity properties of the 
measure #e expressed by (ii) of the theorem. 

For our purposes it is quite important to observe that for 2 large, the 
map T~. has two fixed points A and B, one stable and one unstable (see 
Fig. 1 below). 

We will see in the next section that Eq. (2.3) is the basic tool for com- 
puting the Liapunov exponent. 

3. M A I N  R E S U L T S  

In this section we state and prove our main results concerning the 
asymptotic behavior of the Liapunov exponent 7~(E) as 2 goes to infinity 
and E runs through the spectrum of X =  [ - 2 ,  2] u [ 2 - 2 ,  2 + 2 ]  of H. In 
the first theorem we show that uniformly in the energy E, 7~(E) goes to 
infinity as 2 ~ ~ ,  while in the second theorem we compute explicitly the 
exact rate for a dense set of energies. Since there is a clear symmetry 
between the lower band [ - 2 ,  + 2] and the upper band [-2- 2, 2 + 2] of X, 
all the results are stated only for ]E] < 2. 
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T h e o r e m  1. The following relation holds: 

lim inf 7).(E)/ln 2 > k(p) 
2 ~ o o  IEI<2 

with k(p) > (1 - p)2/2[ 1 + (1 - p)p2] .  

T h e o r e m  2. For  any energy E of the form 

E = 2 cos(r&/L + 1 ) 

where k and L + 1 are mutually prime integers satisfying 0 < k < L + 1, we 
have 

lim y;.(E)/ln 2 = 1 - p - (1 - p)2pL/(1 -- pL+ 1) 
2 ~ o o  

Remark 1. It appears from the result of Theorem 2 that 

inf lim 7~.(E)/ln 2 =  lim 7~.(0)/ln )~= (1 - p ) / ( 1  + p )  
lE t<2  2 ~ o o  2 ~ o o  

However, the numerical simulations described in the next section indicate 
that for large but fixed 2 the minimum of 7~(E)/ln 2 is attained for 
E 0 = - 2 / 2 ,  where 7~ . (E )< (1 -p ) ln (2 ) / 2 .  This value of the energy is 
exactly the lowest eigenvalue of the Jacobi matrix H(v) with v(0)= 0 and 
v = 2 elsewhere and, at least to first order in 1/2, it is also the eigenvalue of 
any finite block of length L containing a site of zero potential surrounded 
by two sites where v = 2. Thus, the tunneling at this special energy among 
these blocks is strongly enhanced, with the result of lowering considerably 
the Liapunov exponent. That this should be indeed the case is also 
suggested by the proof of Theorem 1, to which we now turn. 

Proof of  Theorem 1. The main tool for the proof is a clever use of 
the invariance of the measure #E expressed by formula (2.3). For  notational 
convenience we will suppress the subscript E in the measure #e. 

We start by integrating by parts in the Furstemberg formula of 
Section 2. We get 

7~.(E) = -- dz 1-71 1 # (  - -  00,  Z) + d z  z 1 # ( 0 ,  z )  
- o o  

g fo 
- d z z - ' ~ ( z ,  o o ) +  dz Izl-1 ~(z, 0) (3.1) 

--1 

Integration by parts holds because of the decay properties of the measure # 
discussed in Section 2. 
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We proceed by showing that the measure p of the tails # ( -  o% z) and 
#(z, + oo) appearing in the negative terms in (3.1) can be controlled by the 
measure ~t of a neighborhood of the origin. This kind of computation can 
be easily visualized by looking at Fig. 1. 

For z >  3 we have 

# ( -  oo, - z ) = # ( 0 ,  1 / ( z - E ) ) - ( 1 - p ) # ( - z ,  2 - z )  (3.2) 

#(z, + o o ) = # ( - 1 / ( z + E ) , O ) + ( 1 - p ) # ( z ,  2 + z )  (3.3) 

If z > )~ - E we also have 

#(z, + o o ) = # ( - 1 / ( z - ( 2 - E ) ) , O ) - p # ( z - ) o , z )  (3.4) 

To prove (3.2) and (3.3), we apply formula (2.3) to the sets To(-Oo, - z )  
and To(z, + oo), respectively. For example, (2.3) applied to T o ( - O o , - z )  
gives 

# ( T o ( -  o% - z ) )  = #(0, 1/(z - E)) 

= pet( - 0% --z) + (1 -- p) #(T;. 1(0, 1/(z - E))) 

= p # ( -  oo, -z)-I-  (1 - p ) # ( - o o ,  2 - z )  

= ~(  - oo, - z )  + (1 - p )  ~ ( - z ,  ~ - z )  (3.5)  

and (3.2) follows. 

'0j 
_J 

i 

- E l  " 

~ 

8 

Fig. 1 
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Expression (3.3) is proved in a similar way. To prove (3.4), we use the 
set T;.(z, + oo ): 

~(r~(z, + oo) = # ( -  1/(z-  (;~- E)), 0) 
= ( 1 - p ) # ( z ,  + o o ) + p # ( z - 2 ,  + o o )  

= (z, + ov ) + p # ( z  - 2, z )  (3.6) 

if z > 2 - E .  
We now use (3.2) to bound  from below the sum of the first two terms 

in the rhs of (3.1): 

fo dz z-l#(O' z ) -  f~176 dz - z) 

: fO dzz-l~l(O, z)-- f3 dZZ 1#(0, l/(z--E)) 

> d z ( l + E z )  ~E#(O,z)+ dzz l#(0, z) 

f? > - - a o +  ( l - p )  dzz l # ( - z , Z - z )  (3.7) 

where a o is a constant  independent of E and 2. In a similar way, we can 
estimate the sum of the third and fourth terms. In this case it is convenient  
to split the integral: 

fl ~ [ f3 ~ 
dz z l#(z, + oo) :~/2 = dzz-l#(z,  +o0)+ dzz-l#(z,  +oo)+c 

a3 Z/2 

(3.8) 

where 

c= dzz-l#(z,  +c~)+ox /2  dzz-l#(z,  + o o ) < c  o (3.9) 

independent of E and Z. 
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Then one uses (3.3) in the first integral and (3.4) in the second. The 
final result is 

& z-l~t(0; z) - &z- '~(z ,  +oe) 
1 

> - a l - ( 1 - p )  dzz i/~(z, z + 2) 
o3 

(3.10) 

with a 1 independent of E and 2. 
By combining (3.1), (3.7), and (3.10) together, we finally get 

7~.(E) > - a 3 + ( 1  _ p) ~;./2 dzz-l[#(  - z ,  2 - z ) - p ( z ,  z + 2 ) ]  (3.11) 
o3 

Thus, in order to show that ~,x(E) diverges uniformly in the energy E like 
const . ln  2, it is enough to prove that, uniformly in E and in z e [3, 2/2], 
the quantity 

l~(-z, 2 - z ) - p ( z , z + 2 ) = # ( - z , z ) - p ( 2 - z ,  2+z) (3.12) 

is greater than a positive constant k(p) independent of 2. 
To estimate (3.12), we first have to fix some notations. 
We denote by A = A(2, E) the stable fixed point for the map Tx, i.e., 

A = ( 2 - E - A )  1 

= { 2 - E -  [(2-E)2-411/2}/2 

= O ( + 1 / 2 )  as 2 ~ o e  (3.13) 

Next we prove two estimates that are at the basis of the subsequent 
computations: 

g ( - z ,  z) > 1/2 for any z > 3 (3.14) 

and 

p(2-z ,  2 + z ) < # ( - E - 1 / ( 2 - z ) ,  - E - 1 / ( 2 + z ) )  (3.15) 

To prove (3.14), let us apply (2. ) to the set ( - a z ,  - z ) w ( z ,  +co).  We 
have 

~ ( ( - ~ , - z ) u  (z, + ~ ) )  

= (1 - p) p ( - E -  1/(2 - z), - E -  1/(2 + z)) 

+ p # ( - E - -  1/z, --E+ 1/z) (3.16) 
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which implies, for 3 < z < 2/2, 

# ( ( - ~ , - z ) w ( z ,  + ~ ) ) < # ( - E - 1 / z , - E + l / z ) < # ( - z , z )  (3.17) 

Thus (3.14) follows. 
To prove (3.15), we apply (2. ) to the set ( 2 - z ,  2 + z ) :  

#(2 - z,/t  + z) = (1 - p) #(2 - E - 1/(2 - z), 2 - E -  1/(2 + z)) 

+ p#( - E -  1/(2 -- z), - E + 1/(2 + z)) 

< (1 --p)iz(2--z ,  2 + z ) + p # ( - E -  l / ( 2 - z ) ,  - E -  1/(2 + z ) )  

(3.18) 

and (3.15) follows. 
We can proceed to the estimate of the quanti ty 

# ( - z , z ) - # ( 2 - z ,  2 + z ) ,  3 < z < 2 / 2  (3.19) 

We have to distinguish between two different cases: 

case a - E r  [ - 2 ,  + 2 / ( 3 2 ) ]  (3.20a) 

case b - E r  [2/(32), 2]  (3.20b) 

Notice that  the function A(E) - E is mono tone  decreasing and A(E) = - E  
i f  E = - 1 / 2 .  

Case a. In this case, using (3.16), we estimate (3.19) by 
# ( - E - 1 / ( 2 +  z), z), which in turn is bounded  from below by 

# ( - E -  1/(2 + z), z) > #(0, z) > (1 - p) p( - ~ ,  2 -  E -  1/z) (3.21) 

Therefore,  for - 2  < - E <  22/3 and any z, 2/2 > z > 3: 

# ( - E - 1 / ( 2 + z ) , z ) > ( 1 - p ) # ( - z , z ) > ( 1 - p ) / 2  (3.22) 

This proves, together  with (3.11), that  for any - E r  [ - -2 ,  22/3]  and any 2 
sufficiently large (e.g., 2 > 10) 

?).(E) > [(1 - p)2/2]  in 2 - c (3.23) 

with c independent of  2 and E. 

Case b. 2 > - E > 2 / ( 3 2 ) .  In this case we estimate (3.20), using 
(3.16), by 

# ( - E , z )  if 1 / 2 > - E > 2 / ( 3 2 )  (3.24) 
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and by 

# ( - z , - E - 1 / ( 2 - z ) )  if 2 >  - E >  1/2 (3.25) 

In the first case (3.24) we will prove that 

# ( - E ,  z ) >  (1 -p )p2# (2 - z ,  2 + z )  (3.26) 

Assuming (3.26), it follows that 

# ( - z , z ) - # ( 2 - z ,  2 + z ) > ( 1 - p ) p 2 # ( 2 - z ,  2+z) (3.27) 

and therefore, using (3.14), we have 

# ( - z , z ) - # ( 2 - z ,  2 + z ) > ( 1 - p ) p Z / Z [ Z + ( 1 - p ) p  2] (3.28) 

Thus, 

7; . (E)>(1-p )pZ /Z[ l+(1 -p )pZ] ln2-c  VE~ [ -  1/2, -2 / (32) ]  

To prove (3.26), we apply (2.3) to the set ( - E ,  z) and use the fact that 
under the action of the map Tx 1 the point - E  moves to the left, since 
A(E) > - E  if - E e  [1/2, 2/(32)]. We have 

# ( - E , z ) > ( 1 - p ) p ( T ;  l ( - E , z ) ) > ( 1 - p ) # ( - E ,  2 - E - 1 / z )  (3.29) 

Using now the map T o~, we have 

/~(- E, 2 - E -  1/z) > pp(To~(- E, 2-- E-- l/z) 

= p # ( - E +  1/E, - E +  1 / (2 -  E -  l/z)) 

> p2#(--E'+- (E-- l/E) -1, -E-[- [E-J- 1/( .~-E- 1/z)3 -1) 

(3.30) 

We observe that if 1/2> - E >  2/(32) and 2/2> z > 3, 

- -E+(E-1 /E)  1 < 2 - z  
(3.31) 

- E + [ E + I / ( 2 - E - 1 / z ) ]  1 > 2 + z  

Thus, the rhs of (3.30) is greater than p2#(2 -  z, 2 + z) and (3.26) follows. 
We are left with the case (3.25), 2 > - E > A ( E ) .  In this case we 

observe that 

- E - 1/(2 - z) > - 1/(E + 2 + z) (3.32) 
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Therefore 

#(-z ,  - E -  1/(2-- z))> #( -z ,  -1 / (E  + 2 + z))> p#(--E + 1/z, 2 + z )  

>pl~(2-z, 2+z) if 2 / 2 > z > 3  (3.33) 

By the same reasons that led to (3.28), we conclude that 

y ( - z , z ) - y ( 2 -  z, 2 + z)> p/[2(1 + p ) ]  (3.34) 

i.e., 

inf 7~(E) < p/J2(1 + p)] In 2 -  c (3.35) 
1 /2<E<2  

The proof is finished. 

Proof of Theorem 2. To prove the theorem, we will combine the 
initial definition of the Liapunov exponent (1.3) together with the Thouless 
formula (1.7). The main idea is the following: for the special energies con- 
sidered in the theorem it is possible to compute explicitly the product of the 
random matrices T/(v, E) associated to strings of potential v of a particular 
form. The result is that these strings contribute to the full product (1.3) 
exactly like a single matrix T(E), with, however, the potential v replaced by 
a new, explicitly computable effective potential ~. In this way one shows 
that the Liapunov exponent 7~.(E) is an explicit constant times the 
Liapunov exponent ~.(E) for the effective potential ~. The advantage of this 
procedure is that for the new potential g the contribution of the negative 
singularity at E' = E in the Thouless formula becomes negligible in the limit 
2--+ +oo compared with that of the positive part (1.8) and the heuristic 
considerations of Section 1 can be rigorously implemented. Thus, let E =  
2 cos[rck/(L + 1)] with k and L as in the theorem. It is easy to see that E is 
an eigenvalue of the discrete Laplacian --A,L +, t restricted to the interval 
[1, n L + n - 1 ] ,  n eN.  This fact allows us to compute directly the 
(nL + n - 1) power of the transfer matrix To: 

; )  

We have 

, O nL+n '337  
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The specific choice of the sign depends on n and L, but it is completely 
irrelevant for our purposes. Furthermore, since 

1) 
we have that (To)nL+" = _+I. 

The last algebraic identity that will be at the basis of the construction 
of the effective potential f is the following: 

(m~- E, - 1 ) (  0, 1 )(j~.- E, 
1, 0J\--1,-E}\I, --;) = ((17 + j,R-E' 10) 

(3.39) 
for any m, j ~ N. 

In order to construct the new potential, we first have to fix some 
simple notations. 

We will denote by SQ any strong of Q nearest neighbor sites and by 
v{So_ } the corresponding potential. We will also write v{SQ} = 0 ( 2 )  if 
v = 0(2) at any site in SQ. By {Se,, SQ2,... , SQ~} we will denote the string 
SQ, Q = Z ~ = I  Qj, obtained by joining together in the given order the 
strings SQ. Identities (3.37)-(3.39) suggest that we construct the effective 
potential f out of the potential v according to the following set of rules: 

a. If v{SQ} = 0  and Q ' = Q -  [Q/ (L+  1 ) ] ( L+  1 ) < L ,  then the string 
SQ is replaced by the shorter string S o, with g{SQ,} = 0. Here [, ] denotes 
the integer part. 

b. Any string S o such that S o =  {SQt , S o ..... Sore } with each S o 
having the property that: (i) v = 2 at its leftmost site and v = 0 elsewhere; 
and (ii) Q j - I - [ ( Q j - 1 ) / ( L + I ) ] ( L + I ) = L ,  j = l  ..... m - l ,  Q m = l ;  is 
replaced by a string S o, of length Q' = 1 and v{ SQ, } = m2. 

A string S o, that is the result of the application of either rule a or rule 
b to a string SQ will be called "renormalized." 

These rules are illustrated in Fig. 2 for the simple case L = 1, namely 
E = 0 .  

v:X v=O v=O v=:X v=k v=O v=X 

$ $ 

Fig. 2 
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Remark 1. In the above example (see Fig. 2) two sites of potential 
equal to 2 separated by a site of zero potential give an effective potential at 
E = 0 equal to 22 and not of the order of 22 as one might naively expect. 
Thus, their contribution to the Liapunov exponent 7)~(0) will still be log 2 
and not 2 log 2. This explain why one gets values of the Liapunov exponent 
smaller than (1 - p) log 2. 

Remark 2. The construction of the effective potential ~ is done 
directly on the infinite configuration v = {v(j)}j~ z. It is clear that with the 
exception of a set of measure zero, the configuration g will be an infinite 
sequence of random variables taking values 0, 2, 22 .... labeled by numbers 
in Z. The random variables ~(j) and g(rn) are independent provided that 
I m - j l  > L. Note that by construction the maximum length of a string of 
g = 0 i s  L - 1 .  

In order to fix the origin of the new configuration g, we adopt the 
following convention. If the site x = 0 belongs to a string SQ that can be 
renormalized using rule a, then: (i) if Q = n ( L +  1) for some n, the new 
origin is set at the site immediately to the right of SQ; (ii) if Q > Q/(L + 1), 
the new origin will be the leftmost site of the renormalized string SQ,. If the 
site x = 0 belongs to a string SQ that can be renormalized using rule b, or if 
it does not belong to a renormalizable string [i.e., v (0)= 2 and neither to 
the left nor to the right is there a string SQ, Q = n(L + 1) + L, for some n, 
with v { SQ } = 0], then the new origin will coincide with the old one. 

It is clear f rom rules a and b that in the construction of the effective 
potential there is a kind of decimation procedure. However, the number of 
variables ~ that are obtained from n variables v is roughly speaking propor- 
tional to n. More precisely, let 

N-(n ,  v ) =  # { j > 0 ;  ~(j) depends only on v(k), k~ [1,..., n]} 

and let 

N + (n, v) = N (n, v) + # {j > 0; ~(j) is obtained by 

applying rule a or rule b to a string 

SQ such that S o c~ [1 ..... n] r ~ ,  

but SQ ~ [1,..., n] } 

Clearly N + (n, v) - N -  (n, v) < 2(L - 1) by construction. 
Furthermore, using the ergodic theorem, one easily proves that 

lira N-(n ,  v)/n = g(p, L) (3.40) 
n ~ o o  

with probability 1. The specific value of g(p, L) would be easy to compute, 
but for reasons that will be clear later, we do not need it. 
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Using Remark 2 together with (1.3) and (3.37)-(3.39), we get finally 
the following basic identity 

7~(E) = %,(E) g(p, L) (3.41) 

where ~ (E)  denotes the Liapunov exponent for ~. 
Let now dN;.(E') be the i.d.s, measure for the potential ~ [-see (1.5)]. 
Since the maximum length of a string S e with O{So} = 0  is L - 1  and 

since the energy under consideration is not an eigenvalue of - A Q for Q < L 
(we are using here the fact that L + 1 and k are mutually prime), we have 
that for 2 so large that 1/2 ~ 6/2, 5 =- minQ < L dist(E, spec( -  A Q)), 

Nx(E + ~i/2) -- Na(E-- 5/2) = 0 (3.42) 

Therefore, the first integral in the Thouless formula 

f +~ dN;~(E') ln f ~  ~(E)  = IE-E'[ + dAr~(E') in [E-E'[ (3.43) 

will stay bounded uniformly in 2. 
Next we compute the asymptotics as 2--, ~ of the second term in 

(3.43). Since the effective potential ~ takes values that are integers multiples 
of 4, the second integral can be written as 

f~ d~,(E')lnlE-E'I-= ~ fs~=+2dNJE')lnIE-E'I (3.44) 
2 V; 2 �9 j = l  " -  

I t  is easy to see that 

In [Ji "J;~J;~+2d~(x(E')<C2 uniformly in 2 (3.45) 
j ~ l  . , -  

I n  fact, 

N;.(j2 + 2) - Nz(j2 - 2) ~ P{ ~(0) = j2} 

and this last probability obviously decays exponentially fast in j. 
Therefore we can conclude that 

lim (E') in IE--E' ln2 
2 ~ o O  

j =  l 'lj). 2 

= 1 - ~ ~ ( 2  - 2 )  = 1 + R . ~ ( 2 )  ( 3 . 4 6 )  



16 Martinelli and Micheli 

that is 

lim 7~(E)/log 2 = [1 - Arz(2)] g(p, L) 
2 ~ o O  

(3.47) 

To compute the rhs of (3.47), we observe that, using the ergodic theorem, 
one has 

lim 1/n{ # (0 < j <  n; v(j) = 2) 
n ~ o o  

- # (strings SQ c [0, n ]; Q = j(L + 1 ) + L for some j and v { SQ } = 0) } 

= lira N-(n,  v)/nN-(n, v){ # (0 < j <  N-(n,  v); f ( j )  > 0)} 
n ~ o o  

= g(p, L)[1 - N z ( 2 ) ]  (3.48) 

On the other hand, the left-hand side of (3.48) is equal to 

_ p _  ( l _ p ) 2  pj(L+I)+L = l _ p _ ( l _ p ) 2 p L / ( l _ p Z . + l )  
/ 0 

(3.49) 

and the proof is finished. 

4. N U M E R I C A L  R E S U L T S  

We conclude this work by presenting some numerical results on 74- 
They have been obtained by computing by the Monte Carlo method the 
Liapunov exponent of a string of 10 4 sites. The probability p was taken 
equal to 1/2 and the coupling constant 2 equal to 100. In Fig. 3 the energy 
step is 0.01, while in Fig. 4 it is taken equal to 0.0005. The values for ~)~(0) 
and 7~.(1) that we obtain are 0.338 In 2 and 0.440 In 2, respectively, in good 
agreement with the predicted values 

( l - p ) / ( 1  + p ) l o g 2 =  1/31n)t 

(1 - p2)/(1 + p2 + p) in 2 = 3/7 in 2 

It is clear from the figures that the minimum of the Liapunov exponent is 
attained at E =  -2/2,  where we obtain 

~,~(-2/)~ ~ 0.22 log 2 < 1/2(t - p) log 2 



Liapunov Exponent in a Binary Alloy 17 

i 
- 2  

~x( E ? 

I i 111~ r 

';'~"l"",) ,t )lp ' '"~f#,~,,i l,,,,d~,t~ ' ~" - "~%,,,, - jt,~}'/"~, ~"~' ~'~'~I I'"qr t(,, ,, ~uy~l~,, , ,t~, ,, ~, ,,11; ~ ~ "~" 

-1 

F ig .  3. 

I r 
-Z/), d E 2 

G r a p h  of the Liapunov exponent for p = 0.5, 2 = 100. 

�9 ,, .,~ll i ..... 

/~,tllP 

I 

~O 

Fig. 4. 

t I I 
- ~  - ~  o 

Graph of the Liapunov exponent around E =  - 2 / 2  for p = 0.5, 2 = 100. 

822/48/1-2-2 



18 Martinelli  and Micheli 

R E F E R E N C E S  

1. H. Schmidt, Phys. Rev. 105:425 (1957). 
2. K. Ishii, SuppL Progr. Theor. Phys. 53:77 (1973). 
3. P. Bougerol and J. Lacroix, Products of Random Matrices with Application to Schrfdinger 

Operators (Birkhauser, Boston, 1985). 
4. R. Carmona, A. Klein, and F. Martinelli, Comm. Math. Phys., to appear. 
5. B. Simon and M. Taylor, Comm. Math. Phys. 101:1 (1985). 
6. D. J. Thouless, J. Phys. C 5:77 (1972). 
7. F. Wegner, Z. Phys. B 44:9 (1981). 
8. E. Le Page, Empirical distribution of the eigenvalues of a Jacobi matrix, Probability 

measures on groups, VII Springer Lecture Notes Series 1064 (1983), p. 309. 
9. B. Halperin, Adv. Chem. Phys. 13:123 (1967). 

10. Th. M. Nieuwenhuizen and J. M. Luck, J. Star. Phys. Vol. 41:No. 5/6, 745 (1985). 
11. B. Derrida and E. Gardner, J. Phys. (Paris) 45:1283 (1984). 


